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ABSTRACT
Establishing trust amongst agents is of central importance to the de-
velopment of well-functioning multi-agent systems. For example,
the anonymity of transactions on the Internet can lead to inefficien-
cies; e.g., a seller on eBay failing to ship a good as promised, or
a user free-riding on a file-sharing network. Trust (or reputation)
mechanisms can help by aggregating and sharing trust information
between agents. Unfortunately these mechanisms can often be ma-
nipulated by strategic agents. Existing mechanisms are either very
robust to manipulation (i.e., manipulations are not beneficial for
strategic agents), or they are very informative (i.e., good at aggre-
gating trust data), but never both. This paper explores this trade-off
between these competing desiderata. First, we introduce a metric to
evaluate the informativeness of existing trust mechanisms. We then
show analytically that trust mechanisms can be combined to gen-
erate new hybrid mechanisms with intermediate robustness proper-
ties. We establish through simulation that hybrid mechanisms can
achieve higher overall efficiency in environments with risky trans-
actions and mixtures of agent types (some cooperative, some mali-
cious, and some strategic) than any previously known mechanism.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sciences—
Economics

General Terms
Algorithms, Design, Economics

Keywords
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1. INTRODUCTION
We often interact with anonymous parties over the Internet and

in many environments this can lead to fraudulent behavior. For ex-
ample, on e-commerce websites a seller might advertise a product
with false information, or in P2P networks a malicious user might
distribute a virus. Online, it is difficult to know whom to trust. In-
formation from other users with previous experience in the same
online system can help separate malicious from trustworthy users
and incentivize all users to act cooperatively. On eBay for exam-
ple, user feedback about the quality of sellers and buyers is ag-
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gregated. Research has shown that consumers take the aggregated
information regarding a seller into account when purchasing prod-
ucts [12]. Mechanisms that aggregate information and compute
a score for each agent are called trust mechanisms (or reputation
mechanisms).1 In this paper we focus on the design of transitive
trust mechanisms, i.e., we assume that if agent A trusts B, and B
trusts C, then A also trusts C to some degree.

1.1 Informativeness vs. Strategyproofness
We aim to design trust mechanisms that have good informative-

ness as well as strategyproofness properties. A mechanism is in-
formative if it aggregates the available information well, such that
agents using it can successfully separate good from bad trading
partners. A mechanism is strategyproof if agents cannot improve
their utility in the system by manipulating the trust mechanism.
Strategyproofness is important here because we consider mecha-
nisms that must rely on information provided voluntarily by the
agents and where the outcome of individual transactions cannot be
monitored centrally. Depending on the particular trust mechanism,
agents might be able to manipulate by spreading bad information
about other agents in the system, or by creating fake agents (sybils)
that spread good information about themselves.

Existing trust mechanisms represent distinct tradeoffs between
robustness and informativeness. This can be problematic for overall
system efficiency. On the one hand, if a mechanism is not informa-
tive then it is not very helpful in identifying good and bad agents,
resulting in poor trading decisions and low overall efficiency. On
the other hand, if a mechanism can be easily manipulated, then
many agents may choose to influence a mechanism to their advan-
tage, which in turn decreases overall efficiency as well. In real
environments with risky transactions, there is likely to be a mix-
ture of different kinds of agents. Some agents will be highly trust-
worthy and cooperative, likely to complete a transaction in good
faith. Some agents will be less trustworthy and malicious, with a
greater probability of participating in an incomplete or fraudulent
transaction. Depending on how costly manipulations are, some of
the malicious agents will act strategically and manipulate a trust
mechanism to their advantage.

Previous research has primarily focused on a formal analysis of
the strategyproofness properties of different mechanisms. How-
ever, a formal instrument for measuring and comparing informa-
tiveness was missing. In this paper, we propose a simple metric for
measuring the informativeness of a trust mechanism, independent
from how this information is being used for making decisions in
the environment. This gives us a way to evaluate how well different

1The terminology is in fact used more or less interchangeably in
the literature. Here we use “trust mechanisms” because we use the
concept of transitive trust.
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Figure 1: (a) A simple trust graph with three agents (edge weights are omitted). (b) Agent 2 manipulated the trust graph by cutting
its outlink to agent 3, i.e., decreasing its trust report to 0. (c) Agent 2 manipulated the trust graph further by adding sybil agents.

mechanisms aggregate trust information. We then combine exist-
ing transitive trust mechanisms introducing new hybrid transitive
trust mechanisms, enabling a new continuum of tradeoffs between
the competing desiderata of informativeness and strategyproofness.
This is desirable in order to make the tradeoff that is best for a
given environment with a particular agent population. We estab-
lish analytically that these hybrid mechanisms have intermediate
strategyproofness properties and we show experimentally that they
also have good informativeness properties. Ultimately, however,
we are interested in the overall efficiency resulting from the use of
hybrid mechanisms. We study this in two different simulated do-
mains (file-sharing with viruses, and website surfing). Our results
show that in some settings, hybrid mechanisms can outperform pre-
viously known mechanisms, with efficiency gains up to 7%.

1.2 Related Work
Many transitive trust mechanisms have been introduced in the lit-

erature (for a recent survey see Friedman et al. [8]). The most well
known mechanism is PageRank [10] originally used by Google to
rank websites. However, PageRank was soon found to be highly
susceptible to manipulation, and thus subsequent work has primar-
ily focused on solving the manipulability problem [6, 7, 13]. Alt-
man et al. [1] presented the first axiomatic approach to the design
of trust mechanisms, providing systematic insight into the design
space. Guha et al. [9] present the first large-scale empirical study
on trust mechanisms using transitive trust networks. Sami and
Resnick [11] study the dynamics of transitive trust mechanisms in
environments with risky transactions, looking to limit the cumula-
tive effect of an attack by a powerful adversary.

2. TRANSITIVE TRUST MECHANISMS
We consider multi-agent systems where agents engage in risky

transactions with many other agents, but rarely have repeat inter-
actions with the same other agent. An agent who contacts another
agent puts itself at risk in terms of whether the second agent will
complete the transaction correctly or not. A good outcome leads to
a gain in utility by the first agent, a bad outcome to a loss in utility.

DEFINITION 1 (AGENT MODEL). Each agent vi has a (pri-
vate) type θi ∈ [0, 1], which represents its goodness, or trustwor-
thiness. This is the probability that an agent will generate a good
outcome when participating in a transaction with another agent.

By sharing their direct experiences via the trust mechanism, the
agents can help each other identify and thus avoid bad agents.

DEFINITION 2 (AGENT INFORMATION & REPORTS). Given
a set of agents V = {v1, ..., vn}, let Vi denote the agents that vi

has direct trust information ti about, where ti : Vi → [0, 1], i.e.,
ti(vj) is the trust agent vi has in agent vj . Agent vi makes reports
(V̂i, t̂i) to a transitive trust mechanism. Agent vi is truthful if and
only if (Vi, ti) = (V̂i, t̂i).

DEFINITION 3 (TRUST GRAPH). A trust graph G = (V, E, w)
is a set of vertices V and directed edges (vi, vj) ∈ E, vi, vj ∈ V .
Each edge (vi, vj) has an associated weight w(vi, vj) ∈ [0, 1].

In a trust graph, vertices are individual agents, and the weight
of an edge (vi, vj) corresponds to the last claim that vi has made
regarding its direct trust in agent vj (see Figure 1(a) for a simple ex-
ample). To simplify notation we sometimes use i, j directly instead
of vi, vj . A trust graph is constructed to correspond to agent reports
as follows: for each vertex vi, given report (V̂i, t̂i), create a directed
edge (vi, vj) ∈ E for each vj ∈ V̂i and define w(vi, vj) = t̂i(vj).
If agent vi has reported truthfully, we call the corresponding trust
graph a vi-truthful trust graph. If all agents have reported truth-
fully, we call the corresponding trust graph a truthful trust graph.

DEFINITION 4 (TRANSITIVE TRUST MECHANISM). Let GV

denote the set of trust graphs G = (V, E, w) on V . A transitive
trust mechanism M is a function that for every set of agents V

and for every individual agent vi ∈ V maps GV to a vector of
trust scores for all other agents vj ∈ V, vj �= vi. More formally:
M : GV ×V → [0, 1]n−1. Each Mj(G, vi) denotes the trust score
assigned to agent vj from the perspective of vi. We let M(G, vi)
denote the vector of all trust scores from agent vi’s perspective.

This allows for personalized trust mechanisms where the trust
score assigned to some agent vj depends on which agent’s perspec-
tive vi �= vj is adopted. This might make sense for an environment
where agents trust their own direct experiences more than the re-
ported experiences of others

The goal of using a trust mechanism is to maximize overall sys-
tem efficiency. We measure the efficiency of a trust mechanism
as the fraction of transactions by non-strategic agents that are suc-
cessful. This depends on the strategyproofness and informativeness
properties of the mechanism as well as the details of each problem
domain. The strategyproofness and informativeness of a mecha-
nism are formally defined in Sections 2.1 and 4, respectively.

2.1 Manipulations and Strategyproofness
Following earlier work, we consider two different classes of ma-

nipulations by strategic agents.

DEFINITION 5 (MISREPORT). Given trust graph G = (V, E, w),
define the set E−v = {(x, y) : (x, y) ∈ E,x �= v} (i.e., the set of
all edges in G that do not start at v). A misreport strategy for agent
v ∈ V is a tuple σ = (Ev, wv) where Ev = {(v, u) : u ∈ V }
and wv : Ev → [0, 1]. Applying the strategy σ to G results in trust
graph G↓σ = G′ = (V, E−v ∪ Ev, w′) where w′(e) = w(e) for
all e ∈ E−v , and w′(e′) = wv(e′) for all e′ ∈ Ev.

See Figure 1(b) for an example of a misreport attack.
We now define a sybil manipulation (see Cheng and Friedman [6])

which involves the creation of multiple fake nodes and associated
fake edges in the trust graph. Figure 1(c) shows an example of a
sybil manipulation.
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DEFINITION 6 (SYBIL MANIPULATION). Given a trust graph
G = (V, E,w), a sybil manipulation for agent v ∈ V is a tuple
σ = (S,ES, wS) where S = {s1, ..., sm} is a set of sybil agents,
ES is a set of edges ES = {(x, y) : x ∈ S ∪ {v}, y ∈ V ∪ S},
and wS : ES → [0, 1] are the weights on the edges in ES . Apply-
ing the sybil manipulation σ to G results in a modified trust graph
G ↓ σ = G′ = (V ∪ S, E ∪ ES, w′), where w′(e) = w(e) for
e ∈ E, and w′(e′) = wS(e′) for e′ ∈ ES .

Note that in general, an agent can manipulate a trust mechanism
via a combination of misreports and sybil manipulations. For these
combinations, G↓σ is defined analogously.

We can now define appropriate concepts of strategyproofness.
We use two different concepts, similar to the ones introduced in
Cheng and Friedman [6]. The first one, rank-strategyproofness,
compares the relative trust scores of agents. The second one, value-
strategyproofness, considers an agent’s absolute trust score.

DEFINITION 7 (RANK-STRATEGYPROOF). A transitive trust
mechanism is rank-strategyproof if for any vi-truthful trust graph
G = (V, E,w) where vi ∈ V , and for every strategy σ by node vi

s.t. G ↓ σ = G′, for all vj �= vi, for all vk �= vi : Mi(G, vj) <

Mk(G, vj) ⇒ Mi(G
′, vj) < Mk(G′, vj), i.e., an agent cannot

increase its position in a rank-order from the perspective of any
such agent vj �= vi.

DEFINITION 8 (VALUE-STRATEGYPROOF). A transitive trust
mechanism is value-strategyproof if for any vi-truthful trust graph
G = (V, E, w) with vi ∈ V , and for every strategy σ by node vi

s.t. G↓σ = G′, for all vj �= vi: Mi(G, vj) ≥ Mi(G
′, vj), i.e., an

agent cannot increase its absolute trust score from the perspective
of any agent vj �= vi.

Rank-strategyproofness is appropriate, for example, when an
agent can choose from a list of agents and only the relative trust
scores are important to identify the most trustworthy one. Value-
strategyproofness is appropriate, for example, when agents use a
threshold approach to decide which other agents to transact with;
e.g., any agent with a trust score above a threshold may be accept-
able. It is easy to show that neither of these concepts dominates one
another. For many applications, however, rank-strategyproofness is
a more natural requirement, but it is also harder to achieve.

2.2 Existing Transitive Trust Mechanisms
We now review four transitive trust mechanisms that have been

introduced in this form or very similarly before. The trust scores
produced by the mechanisms are normalized to be in [0, 1].

DEFINITION 9 (PAGERANK [10]). Given a trust graph G =
(V, E, w), PageRank conducts a random walk from a random node
vi ∈ V that at each step, with probability λ (for λ ∈ [0, 1)) follows
a random outlink with probability proportional to weight w(vi, vj),
as a fraction of the total weight on all outlinks, and with probabil-
ity 1 − λ jumps to another node with uniform probability. If the
random walk reaches a node with no outgoing links then PageR-
ank randomly jumps to another node in the trust graph with uni-
form probability. The trust score Mj(G, vi) = π(G, vj) of a node
vj is the same, irrespective of vi, and is given by the probability
π(G, vj) of being in node vj in the stationary distribution of the
Markov process described by the random walk.

Some mechanisms use pre-trusted nodes in their algorithms.
This is reasonable for many domains, e.g., in P2P networks the
administrator of the mechanism might own some trusted servers.

DEFINITION 10 (HITTINGTIME [13]). Given a trust graph
G, the hitting time of a node vj , H(vj), is the number of steps
before a random walk on G first reaches vj . A hitting time trust
mechanism has a set of pre-trusted nodes, and after each time step,
the random walk jumps back to one of the pre-trusted nodes with
some probability λ. The random variable J denotes the number of
time steps before the random walk performs a jump. The trust score
of node vj is the probability that the random walk reaches v before
jumping, i.e., ∀i : Mj(G, vi) = Pr(H(vj) < J).

DEFINITION 11 (MAXFLOW MECHANISM [6]). Given a
trust graph G = (V, E,w) and nodes vi, vj ∈ V , let MF (vi, vj)
denote the maximum flow from node vi to node vj . The maxflow
transitive trust mechanism sets Mj(G, vi) = MF (vi, vj).

DEFINITION 12 (SHORTESTPATH MECHANISM [3]).
Given a trust graph G = (V, E, w), define the trust graph
G′ = (V, E, w′) with w′(i, j) = 1

w(i,j)
, i.e., all edge weights

are flipped such that low trust scores lead to high edge weights in
G′. Now, let SPG′(vi, vj) denote the length of the shortest path
between agents vi and vj in G′. The shortest-path mechanism sets
Mj(G, vi) = 1

SP
G′ (vi,vj)

.

Each of theses mechanisms makes a distinct tradeoff between in-
formativeness and strategyproofness. Previous research has already
established their strategyproofness properties: ShortestPath is best
being rank-strategyproof and value-strategyproof; MaxFlow and
HittingTime are both value-strategyproof, and finally PageRank is
last with no formal strategyproofness properties (see Table 1).

Mechanism Rank-SP Value-SP

ShortestPath Yes Yes
MaxFlow No Yes

HittingTime No Yes
PageRank No No

Table 1: Strategyproofness of Existing Trust Mechanisms

We investigate the informativeness properties of all four mecha-
nisms in Section 4. We find that the order of the mechanisms with
respect to informativeness is roughly reversed. This makes intuitive
sense: the more information a mechanism ignores when comput-
ing trust scores, the better its strategyproofness properties but the
worse its informativeness properties. This illustrates the trade-off
we make when designing trust mechanisms.

3. HYBRID MECHANISMS
We now introduce the idea of a hybrid transitive trust mecha-

nism, which is defined as a linear combination of two mechanisms.

DEFINITION 13 (HYBRID TRANSITIVE TRUST MECHANISMS).
Given mechanisms M1 and M2, we let Mα(M1, M2) denote the
α-hybrid of those mechanisms. Given a trust graph G = (V, E, w)
and vi, vj ∈ V , let M1

j (G, vi) denote the trust value of vj from
vi’s perspective under M1, and let M2

j (G, vi) denote the trust
value of vj from vi’s perspective under M2. The reputation of vj

from vi’s perspective under Mα(M1, M2) is

M
α
j (G, vi) = (1 − α)M1

j (G, vi) + αM
2
j (G, vi).

For a hybrid mechanism Mα(M1, M2) we will by convention
always combine two mechanisms in which M1 is more strate-
gyproof than M2. Often times, but not always, M2 will be more in-
formative than M1. Thus, as α is increased from 0 to 1, the oppor-
tunities for manipulation increase, but we also expect the mecha-
nism to become more informative, at least when no strategic agents
are present. We will look for non-trivial hybrids (with 0 < α < 1)
that have better efficiency than either extreme mechanism.
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3.1 Strategyproofness of Hybrid Mechanisms
LEMMA 1. If mechanisms M1 and M2 are value-

strategyproof, then Mα(M1, M2) is value-strategyproof.

PROOF. If M1 and M2 are both value-strategyproof, then for
any vi-truthful trust graph G = (V, E, w) with vi ∈ V , for ev-
ery strategy σ by node vi s.t. G ↓ σ = G′, for all vj �= vi, we
have M1

i (G, vj) ≥ M1
i (G′, vj) and M2

i (G, vj) ≥ M2
i (G′, vj).

Thus, it follows that (1 − α)M1
i (G, vj) + αM2

i (G, vj) ≥ (1 −
α)M1

i (G′, vj) + αM2
i (G′, vj), for any α ∈ [0, 1].

Unfortunately this does not hold true for the property of rank-
strategyproofness.

LEMMA 2. If mechanisms M1 and M2 are rank-strategyproof,
then Mα(M1, M2) is not necessarily rank-strategyproof.

PROOF. By counterexample. Assume a truthful trust graph with
two agents 1 and 2 and with only one edge from agent 1 to agent
2. M1 always assigns a trust score of 1 to agent 2 and a trust
score of 0.2 to agent 1 (and all other agents). M1 is trivially rank-
strategyproof. M2 always assigns a trust score of 1 to agent 1, and
assigns trust score 0.5 to agent 2 if an edge exists from agent 1
to agent 2 and trust score 0 otherwise. M2 is rank-strategyproof
because agent 1 is always the highest-ranked agent, and agent 2
cannot affect the final ranking. Now, for α = 0.5, agent 1 has
trust value 0.6 while agent 2 has trust value 0.75. If agent 1 now
removes the link to agent 2, then agent 2’s trust value is lowered to
0.5, and agent 1 becomes ranked higher than agent 2, thus proving
that Mα(M1, M2) is not rank-strategyproof.

For the design of hybrid mechanisms, we adopt relaxed notions
of strategyproofness (similar to concepts adopted by [2]).

DEFINITION 14 (ε-VALUE-STRATEGYPROOFNESS). A
tran-sitive-trust mechanism is ε-value-strategyproof for ε > 0 if
for any vi-truthful trust graph G = (V, E, w) with vi ∈ V and
for all manipulation strategies σ for vi giving G′ = G ↓σ, for all
vj �= vi, Mi(G, vj) + ε ≥ Mi(G

′, vj).

DEFINITION 15 (ε-RANK-STRATEGYPROOFNESS). A tran-
sitive-trust mechanism is ε-rank-strategyproof for ε > 0 if for any
vi-truthful trust graph G = (V, E, w) with vi ∈ V and for all ma-
nipulation strategies σ for vi s.t. G′ = G↓σ, for all vj �= vi, vk ∈
V , Mi(G, vj) + ε ≤ Mk(G, vj) ⇒ Mi(G

′, vj) ≤ Mk(G′, vj).

In words, an ε-value-strategyproof mechanism is one in which an
agent cannot increase its trust score by more than ε under any ma-
nipulation strategy and for any trust graph. An ε-rank-strategyproof
mechanism is one in which an agent cannot overcome more than a
difference of ε in trust scores between itself and any other agent,
whatever the trust graph and for any manipulation strategy.

3.2 Value-Strategyproofness Results

THEOREM 1. If transitive trust mechanisms M1 and M2 are
ε1 and ε2-value-strategyproof respectively, then Mα(M1, M2) is(
(1 − α)ε1 + αε2

)
-value-strategyproof.

PROOF. Let M1
i , M2

i denote the trust scores of vi (as viewed
by some other agent) under mechanisms M1 and M2 when vi is
truthful. Let Mα

i = (1 − α)M1
i + αM2

i . Let Mα
i , M1

i and M2
i

denote the trust scores after vi has performed manipulations. Then:

Mα
i − M

α
i =

(1 − α)(M1
i − M

1
i ) + α(M2

i − M
2
i )

≤ (1 − α)ε1 + αε2,

and we see that Mα is
(
(1−α)ε1+αε2

)
-value-strategyproof.

We can now prove corollaries for specific hybrid trust mecha-
nisms:

COROLLARY 1. Mα(Hitting, PageRank) is 0.5α-value-
strategyproof.

PROOF. The HittingTime mechanism is value-
strategyproof [13]. Moreover, Bianchini et al. [4] establish
that PageRank is 0.5-value-strategyproof. By Theorem 1, we have
that Mα(Hitting, PageRank) is 0.5α-value-strategyproof.

COROLLARY 2. Mα(MaxFlow, PageRank) is 0.5α-value-
strategyproof.

COROLLARY 3. Mα(Shortest, PageRank) is 0.5α-value-
strategyproof.

PROOF. MaxFlow and ShortestPath are both value-
strategyproof and thus Corollaries 2 and 3 also follow from
Theorem 1.

3.3 Rank-Strategyproofness Results
Establishing rank-strategyproofness properties for hybrid tran-

sitive-trust mechanisms requires a more delicate argument. For
this, we introduce the following property:

DEFINITION 16 (UPWARDS VALUE-PRESERVANCE). A
tran-sitive-trust mechanism is upwards value-preserving if for any
trust graph G = (V, E, w), for any vi ∈ V , for every strategy σ

by node vi s.t. G ↓ σ = G′, for all vj �= vi, for all vk �= vi we
have Mk(G, vj) > Mi(G, vj) ⇒ Mk(G′, vj) ≥ Mk(G, vj).

This property requires that an agent cannot decrease the trust
score of a higher ranked agent. Note that the ShortestPath mech-
anism is easily seen to be upwards value-preserving: if vi has a
lower trust score than vk from vj ’s perspective, then the path from
vj to vk is shorter than then path from vj to vi; thus, vi cannot
be on the path between agents vk and vj , and therefore vi cannot
affect vk’s trust score.2

THEOREM 2. If transitive trust mechanisms M1 and M2 are
value-strategyproof and M1 satisfies upwards value-preservance,
then Mα(M1, M2) is α-rank-strategyproof.

PROOF. We analyze the trust scores of agents vi and vj from
any third agent’s perspective. To simplify notation, let M1

i , M1
j

denote the trust scores of vi, vj under M1 and let M2
i , M2

j denote
the trust scores under M2. Let Mα

i , Mα
j denote the trust scores

under Mα. Furthermore, let M1
i , M1

j , M2
i , M2

j , and Mα
i , Mα

j de-
note the analogous trust scores after vi has performed manipula-
tions. WLOG, assume that Mα

i > Mα
j , i.e., (1−α)M1

i +αM2
i >

(1 − α)M1
j + αM2

j . With this assumption, it impossible that both
M1

i < M1
j and M2

i < M2
j . Thus, we only need to consider the

following two cases:
Case 1: M1

i > M1
j : Because M1 and M2 are both value-

strategyproof, agent vj cannot increase its own trust score, i.e.,

2However, not all rank-strategyproof mechanisms are upwards
value-preserving. Consider a simple example with 2 agents
v1, v2. Consider the trust mechanism M which assigns trust scores
0.1, 0.2 to agents v1, v2, respectively, unless the only edge in the
graph is the edge (v1, v2) in which case M assigns trust scores
0.2, 0.4 to agents v1, v2. Note that v2 always has a higher trust
score than v1, so this mechanism is rank-strategyproof. However,
it is not upwards value-preserving: if we start out with a graph with
the single edge (v1, v2), then v1 can decrease the trust score of v2

from 0.4 to 0.2 by cutting its outlink (v1, v2).
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Mα
j ≤ Mα

j . Because M1 is upwards value-preserving, agent
vj also cannot decrease vi’s trust score under M1. However,
agent vj can decrease agent vi’s trust score under M2. But
M2

i − M2
i ≤ 1 since M2

i ≤ 1 and M2
i ≥ 0. So, we have

that Mα
i − Mα

i ≤ α. Putting all these arguments together we
get:Mα

i − Mα
j ≥ Mα

i − Mα
j ≥ Mα

i − α − Mα
j ≥ α − α = 0.

And thus, Mα(M1, M2) is α-rank-strategyproof in case 1.
Case 2: M1

i < M1
j and M2

i > M2
j : For α = 0 or α = 1 there is

nothing to be shown. For 0 < α < 1 we show that Mα
i −Mα

j ≥ α

is impossible to begin with:
M

α
i − M

α
j

= αM
2
i + (1 − α)M1

i − αM
2
j − (1 − α)M1

j

≤ α + (1 − α)M1
i − (1 − α)M1

j

= α − (1 − α)(M1
j − M

1
i ) < α.

Thus, Mα is α-rank-strategyproof in case 2 as well.

COROLLARY 4. Hybrid mechanism Mα(Shortest, MaxFlow)
is α-rank-strategyproof.

COROLLARY 5. Hybrid mechanism Mα(Shortest, Hitting) is
α-rank-strategyproof.

PROOF. ShortestPath, MaxFlow, and Hitting-Time are value-
strategyproof [3, 7, 13]. Moreover, ShortestPath is upwards value-
preserving. Thus, Corollaries 4 and 5 follow from Theorem 2.

4. INFORMATIVENESS
In this section we analyze the informativeness of the existing

trust mechanisms as well as our new hybrids. A trust mechanism
shall help agents to find good partners to interact with. Similar to
ideas by Bolton et al. [5], we call a mechanism informative if it dis-
criminates well between good and bad agents, and non-informative
if it does not. A perfectly informative mechanism would be one that
is perfectly discriminative in the sense that it has a strictly mono-
tonic relationship between the trust scores Mj(G, vi) and the agent
types θj . With limited information, no mechanism can be perfectly
informative and thus we want to measure how close our mechanism
comes to this goal. We assume a linear relationship between agent
types and trust scores. Then, the correlation between agents’ types
and the trust scores a mechanism produces tells us how discrimina-
tive the mechanism is. A random mechanism results in a correlation
of 0. A perfectly discriminative mechanism results in a correlation
of 1. Thus, all mechanisms that perform better than random have
informativeness between 0 and 1. We define the informativeness
of a mechanism M on graph G as the correlation between the true
agent types and the trust scores produced by mechanism M . More
formally, we offer the following natural definition:

DEFINITION 17 (INFORMATIVENESS). Let Θ−i denote the
(n − 1)-dimensional vector of all agents’ types except for agent i.
Let Θn

− = 〈Θ−1, Θ−2, ..., Θ−n〉 denote the vector resulting from
combining all Θ−i vectors to a vector of dimension (n−1)n. Given
a trust graph G = (V, E, w), and transitive trust mechanism M ,
let M(G) denote the (n − 1)n-dimensional vector of all agents’
trust scores from all other agents’ perspectives produced by M ,
i.e., M(G) = 〈M(G, v1), M(G, v2), M(G, v3), ..., M(G, vn)〉.
We define the informativeness of mechanism M on graph G as:

Inf (M, G) = correlation(Θn
−, M(G))

=

∑n

i=1

∑
j �=i

(Mj(G, vi) − M̃)(θj − θ̃)

(n(n − 1) − 1)sMsθ

,

where M̃ and θ̃ are the sample means of the trust scores and the
agent types; sM and sθ are the sample standard deviations.

4.1 Experimental Set-up
It is apparent from the definition that the informativeness of a

mechanism is defined with respect to a particular trust graph G.
Thus, to perform an informativeness measurement, we first have
to specify how G is generated in our experiments. In this section,
we focus on a mechanism’s ability to aggregate data and do not
consider its strategyproofness. Thus, we will not consider strate-
gic agents. Also, we want to measure informativeness independent
from how the trust scores are being used by the agents when mak-
ing decisions in the environment. Thus, we start our analysis with
an artificial experiment where a random trust graph is constructed
according to the following process.

We simulate a multi-agent system with 50 agents. Each agent’s
type θi is chosen uniformly at random from [0, 1]. In real-life net-
works, each agent will only have a small number of direct inter-
actions relative to the total number of agents in the system. We
model this in our simulation by limiting the maximum number of
outgoing edges of all agents in the trust graph by κ. This “memory
set” is selected uniformly at random for each agent at the beginning
of the simulation. We let our simulation run for τ time steps. At
each time step, each agent i picks a random partner agent j from
its memory set. The outcome of the interaction between i and j is
good with probability θj and bad with probability 1 − θj . Every
agent keeps track of the total number of interactions and the num-
ber of successful interactions with each partner agent. At the end
of each time step, for each agent i, we set the edge weight of edge
(i, j) equal to the fraction of successful interactions i had with j

divided by the total number of interactions i had with j. After τ

time steps, we stop the interactive part of the experiment and con-
sider the resulting trust graph G as the basis for the analysis. For
each mechanism M that we consider, for each agent i and each
agent j �= i, we compute the trust scores Mj(G, vi). We then cal-
culate the informativeness metric, i.e., the correlation between the
true agent types and the trust scores computed by the mechanisms.3

4.2 Informativeness of Existing Mechanisms
The informativeness metric is sensitive to the parameters of the

trust graph generation process, in particular to the number of time
steps, τ , and to the size of the memory sets, κ. In Figure 2 we
present two graphs that show some patterns that are representative
for our experiments without strategic agents. For both graphs, we
plot the log of the number of time steps on the x-axis, and the in-
formativeness scores on the y-axis. Figure 2(a) shows results for
κ = 5 and Figure 2(b) shows results for κ = 50, i.e., each agent
interacts with every other agent in the system. The legend on Figure
2(a) holds for both graphs.

We see immediately that as the number of time steps increases,
the informativeness scores increase for all mechanisms. This is
expected because over time each agent gets better and better infor-
mation about the type of each agent in its memory set. Note that
the last data points in both graphs correspond to an infinite number
of time steps. We simulated this by setting the edge weights for all
agents inside the memory set equal to the true agents’ types. It is
interesting to note that all mechanisms, except for MaxFlow, reach
informativeness of 1 when κ = 50 and τ = ∞. However, for
practical purposes this is less relevant, because in real-world trust
graphs we will generally only have little information available.

In both graphs, we clearly see that the ShortestPath mechanism

3Note that this way, the informativeness score is already based on
50·49 = 2, 450 trust score measurements. To remove noise, we run
5 trials, generating 5 graphs with the same parameters, increasing
the number of trust scores to 12, 250 before computing the correla-
tion.
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(a) Maximum outdegree: κ = 5 (b) Maximum outdegree: κ = 50

Figure 2: Informativeness experiment with 50 agents and uniform type distribution. We vary the number of time steps τ .

performs worst (except when τ = ∞). This is expected and nicely
illustrates the trade-off between informativeness and strategyproof-
ness. The order of the other basic mechanisms is much less clear.
In general, PageRank and HittingTime are close together, which
makes sense given that both mechanisms use similar algorithms to
compute trust scores. The MaxFlow mechanism shows the largest
variation in informativeness and is particularly sensitive to κ, the
size of the memory set. In Figure 2(a) where κ = 5, MaxFlow has
the highest informativeness, while in Figure 2(b) where κ = 50,
it has the second lowest informativeness. To explore this effect,
we ran additional experiments for more values of κ (not shown
here). It turns out that an interesting cross-over effect happens at
κ = 10: for κ ≤ 10, the MaxFlow mechanism has informativeness
as good as or better than PageRank and HittingTime, for κ ≥ 15,
MaxFlow has informativeness significantly worse than PageRank
and HittingTime.

4.3 Informativeness of Hybrid Mechanisms
We now analyze the informativeness of two hybrid mechanisms:

Mα(Shortest, Hitting) and Mα(Shortest,PageRank). We use these
hybrids because the trade-off is clear in this case: ShortestPath has
the best strategyproofness properties but the worst informativeness
properties. We have shown analytically in the last section that the
hybrids have intermediate strategyproofness properties and we ex-
pected the same result for informativeness.

Thus, it is perhaps surprising that, for many settings, the
hybrids perform as well with respect to informativeness, or
even better, than HittingTime or PageRank. In Figure 2(a),
we see that Mα(Shortest,PageRank) has informativeness scores
that are as good or even higher than those of PageRank, and
Mα(Shortest, Hitting) has scores that are consistently higher than
those of HittingTime. In contrast, in Figure 2(b), we see that both
hybrids have intermediate informativeness, i.e., the informativeness
scores of Mα(Shortest, Hitting) lie between those of ShortestPath
and HittingTime, and the scores of Mα(Shortest,PageRank) lie be-
tween those of ShortestPath and PageRank. Further analysis (data
not shown here) shows that another interesting cross-over effect
happens: for large values of κ, both hybrids have intermediate in-
formativeness as we expected. But for small values of κ, the in-
formativeness of the hybrids is as good or even better than that of
HittingTime or PageRank respectively. At first sight, it is counter-
intuitive that a hybrid mechanism could have informativeness even
higher than any of its component mechanisms. A possible explana-
tion is that both component mechanisms measure different aspects

of the trust graph, and the hybrid mechanism benefits from both
perspectives, i.e., both sources of information. A deeper analysis
of this effect is subject of future research.

5. EFFICIENCY EXPERIMENTS
In this section we analyze the efficiency of hybrid mechanisms.

We would like to investigate whether hybrids with intermediate
informativeness and intermediate strategyproofness properties can
achieve higher performance than any of the “pure” mechanisms.
We measure the efficiency of a trust mechanism as the the fraction
of transactions by non-strategic agents that are successful. Note
that this is no longer independent of how agents use trust scores for
acting in their environment. We consider two simulated domains:
combatting the spread of bad files (e.g., viruses) in a file-sharing
network, and ranking website quality based on link structure.

5.1 Experimental Set-up
Agents are divided into cooperative and malicious agents: coop-

erative agents have type θi = 0.95, while malicious agents have
types drawn uniformly at random from [0, 0.5]. A subset of the
malicious agents are also strategic, i.e, they also consider manipu-
lating the trust mechanism to their benefit.4 We let γ denote the
fraction of the total agent population that is strategic. Properly
simulating the behavior of strategic agents is difficult. We model
strategic behavior by assuming a heterogenous fixed cost for ma-
nipulation (e.g., some agents are more adept than others at hacking
the P2P file sharing software). As α increases, the manipulability
of the mechanism increases linearly with α, leading to higher re-
wards for manipulating agents. Since agents will only manipulate
if the benefit exceeds their cost, we assume that the percentage of
manipulating agents increases linearly with α. For a manipulating
agent, we determine in each context the optimal “attack” on the
trust mechanism.

Virus Distribution Experiment: Imagine a file sharing network
with good and malicious agents. Malicious agents have bad files
that are infected by viruses. A trust mechanism helps to separate
users with good files from users with bad files. In our experiments
we use 100 simulated agents, of which 80% are malicious. We vary

4Note that the strategic agents are only willing to consider manip-
ulating the trust mechanism. Whether they in fact perform manipu-
lations depends on how costly the manipulations are and how much
the agents can benefit from manipulating.
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Figure 3: Virus distribution experiment without strategic agents, varying the maximum outdegree κ.

γ, i.e., the proportion of strategic agents, between 0 and 0.8. In P2P
file sharing settings, the total number of agents in the system is too
large for an agent to track all its interactions. Thus, we set the size
of the memory set, κ, equal to 3. The memory set is selected uni-
formly at random for each agent at the beginning of the simulation.

We initialize the system by constructing a sparse trust graph.
Each agent randomly chooses another agent j from its memory set,
and lays down an edge with weight 1 to j with probability θj . We
repeat this process until each agent has exactly one outgoing edge.
We then start the experiment itself and run it for 100 time steps.
Each time step, agent i obtains a set of three randomly selected
agents drawn from the entire set of agents. With probability 0.9,
the agent uses the trust mechanism to select agent j with the highest
trust score; with probability 0.1 the agent simply selects a random
agent. This ε-greedy selection policy encourages agents to explore
and discover agents outside their memory set. Once j is selected,
with probability θj , agent j sends a good file (otherwise it sends
a bad file). After the interaction has taken place, agent i makes a
report to the trust mechanism, updating the weight of its edge to
agent j to be the fraction of successful transactions over the total
number of transactions. Strategic agents in this setting only em-
ploy misreport strategies because Mα(MShortest, MHitting) is robust
against sybil manipulations. By cutting all their out links they do
not affect their own trust scores, but could lower the trust scores of
agents ranked above them, thus improving their relative rank.

Website Ranking Experiment: This experiment uses a trust
mechanism to rank websites according to their quality, helping web
surfers differentiate between high quality and low quality websites.
We assume that the set of surfers and the set of website owners
coincides, i.e., each surfer has one pre-trusted website. We simu-
late 50 agents of which 80% are malicious (low quality websites)
and we vary γ, the proportion of strategic agents (website owners),
between 0 and 0.8.

We limit each agent to interacting with a randomly chosen mem-
ory set of size κ = 5. For each agent, we sample 10 times from that
agent’s memory set, simulate a transaction with each of the sampled
agents, and finally update the edge weights as before corresponding
to the number of successful interactions. Strategic agents (website
owners) employ the misreport manipulation as well as a sybil ma-
nipulation (5 sybils) in the optimal star-shaped pattern [4].

We leave the trust graph unchanged over the duration of the ex-
periment (i.e., surfers do not constantly update their own websites).
We run the experiment for 100 time steps. At each time step, each

surfer is provided with five randomly selected websites and consid-
ers their trust scores. We use a threshold-based selection rule: the
surfer visits a random website from the set of websites with a trust
score higher than a certain threshold (which we set to the median
trust score across all agents).

5.2 Efficiency without Strategic Agents
In Figure 3 we present efficiency and informativeness results

(averaged over 10 trial runs) for the virus distribution experiment.
In Figure 3(a), we plot the informativeness of the mechanisms on
the y-axis, this time varying the maximum outdegree κ on the x-
axis. We see that the overall pattern is similar to the one we have
described in Section 4. The ShortestPath mechanism has lowest
informativeness and MaxFlow has highest informativeness. The
mechanisms HittingTime and PageRank are close together and are
slightly less informative than MaxFlow. We also see that the two
hybrids Mα(Shortest, Hitting) and Mα(Shortest, PageRank) have
intermediate informativeness.

Consider now Figure 3(b), where we plot overall efficiency on
the y-axis and vary the maximum outdegree κ on the x-axis. We see
that the ordering of the mechanisms is the same as in Figure 3(a),
except for the MaxFlow mechanism, which on average performs
slightly worse than HittingTime and PageRank, even though it had
better informativeness. Thus, without strategic agents and with the
exception of MaxFlow, the informativeness of a mechanism seems
to be a very good predictor of its efficiency. We have already seen in
Section 4 that the MaxFlow mechanism is very sensitive to various
parameter settings. A more detailed analysis of the properties of
MaxFlow is subject of ongoing research.

5.3 Efficiency with Strategic Agents
We now analyze the efficiency of our hybrid mechanisms in the

presence of strategic agents. In Figure 4(a) we display the results
for the virus distribution experiment, and in Figure 4(b) the results
for the WebRank experiment. On the x-axis we plot the blend factor
α ∈ [0, 1] and on the y-axis we plot efficiency.

We see that with 0% strategic agents, efficiency increases almost
monotonically as we move from ShortestPath to HittingTime or
PageRank respectively. This is expected because ShortestPath is
very uninformative, and without strategic agents, it has no bene-
fits over the other mechanisms. However, the situation is different
when strategic agents are present, i.e., for γ ≥ 0.2. Now we see
that for α-values close to 1, the efficiency decreases significantly.
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Figure 4: Efficiency analysis for hybrid mechanisms with strategic agents, varying blend factor α.

This is also expected because HittingTime and PageRank are both
susceptible to the manipulations performed by strategic agents and
thus, the more weight we give those mechanisms, the more suc-
cessful the strategic agents are at manipulating the hybrids.5

The most important finding, however, is that initially, the effi-
ciency goes up as we increase α and the efficiency peak in both
cases does not occur for one of the base mechanisms. Instead, the
efficiency peak in Figure 4(a) is around α = 0.5 with a relative effi-
ciency increase up to 5%. In Figure 4 the peak is around α = 0.02
with a relative efficiency increase up to 7%. Thus, when strategic
agents are present, the optimal hybrid mechanisms achieve higher
overall efficiency than either of the component mechanisms.6

6. CONCLUSION
In this paper, we have introduced hybrid transitive trust mech-

anisms, which allow for a continuum of design tradeoffs between
existing point solutions in the literature. We have shown analyti-
cally that these hybrids have intermediate strategyproofness prop-
erties. We have presented a simple metric to measure informative-
ness of trust mechanisms and via simulations we found that hybrid
mechanisms have intermediate or sometimes even better informa-
tiveness than any of their component mechanisms. Finally, we have
performed efficiency experiments to study the overall effect of us-
ing hybrid mechanisms. Our experimental results suggest that in
some domains it is possible to improve efficiency by blending to-
gether two mechanisms, making a tradeoff between informative-
ness and strategyproofness that is optimal for a given population of
agents. Note that the optimal α depends on the agent population
and how costly it is for strategic agents to actually manipulate the
mechanism. Our current experimental methodology is deliberately

5Note that in Figure 4(b), for γ = 0.6 and γ = 0.8, the efficiency
increases again as we move from α = 0.9 to α = 1. This happens
because at α = 0.9, the strategic agents affect the hybrid twice,
via ShortestPath and via PageRank. As we have seen in Figure 2,
ShortestPath is particularly bad when it has little information. For
α = 0.9, the strategic agents cannot influence their trust scores
under ShortestPath, but the mechanism still stuffers significantly
from the missing information due to many misreport attacks. Close
to α = 1, ShortestPath loses effect, and as we have seen in Figure
2, PageRank is significantly better at coping with little information
in the trust graph which explains the efficiency increase at the end.
6We also measured the informativeness for the two experiments
with strategic agents, varying the blend factor α. For the virus dis-
tribution experiment, the best hybrid has informativeness that is
14% higher than that of ShortestPath or HittingTime. For the We-
bRank experiment, the best hybrid has informativeness that is 10%
higher than that of ShortestPath or PageRank.

simplistic: as we increase blend factor α from 0 to 1, we also in-
crease the fraction of strategic agents that choose to manipulate.
This models a simple cost-benefit tradeoff. As a next step, we will
instead assume a model in which this cost-benefit analysis is made
explicit. In future work we will also consider the computational re-
quirements of the trust mechanisms. For practical applications, in-
formativeness and strategyproofness are important, but in any case
it must be feasible to run the mechanisms on real-sized graphs.
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